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ABSTRACT 
The purpose of this research is to study the interaction between a fluid and a circular pile, located downstream 

from a fan-shaped dam, through the fractional Navier-Stokes equations, and in particular, its approximation to 

the boundary layer. The flow region is divided into zones according to the vorticity transport theory of 

turbulence. First, we consider the limit of the spatial occupancy index close to 1. Then, a stream function is 

introduced, and for the potential zone, we consider a complex potential, using the inverse distances on a circle. 

In the other limit, when the spatial occupation index approaches 0, we consider the equations of the boundary 

layer in the limit of fully developed turbulence. Next, for the last approaches, a new stream function and 

velocities in their radial and polar components are obtained. We also find the asymmetry of the pressure 

distribution around the pile, based on the viscosity and considering that the pressure drag force and the friction 

coefficients are proportional to the inverse of the Reynolds number. We conclude that D'Alembert's paradox and 

Thomson's theorem has been resolved. For applications, in the case of the turbulent wake, we are interested both 

in the orientation given by the pile symmetry axis and its extension. The criterion that should be satisfied is: the 

diameter of the pile, on the border of inequality, must be located as proportional average between the length of 

the turbulent wake and twice the characteristic length associated with the dam, whose aspect ratio, in turn, to the 

pile diameter, determines the contraction factor. 
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I. INTRODUCTION 
The main objective of this research is to 

study the interaction between a fluid and a pile, 

particularly in the leeward region of the pile. In 

addition to restoring coherence, we differentiate 

between highly turbulent limit and inviscid fluid, 

thus resolving D'Alembert paradox and 

reformulating Thomson's theorem on circulation. 

Here we use the Riemann-Liouville fractional 

derivative concept. 

We approach the case of a cylindrical pile 

with circular cross section, smooth surface, oriented 

transversely-vertically to the main flow direction, 

and fixed on a rigid bed. 

The fluid movement is described by means 

of the fractional Navier-Stokes equations, and 

particularly by its approximation to the boundary 

layer. Within the Eulerian formulation as the 

velocity vector field and the Helmholtz theorem, the 

vector field is recovered from two potential types: 

vector and scalar. So the field is divided into zones 

of nonzero vorticity and zero vorticity or potential 

zone according to the scalar field theory, being the 

rotational the smaller area, corresponding to 

experimental results, as also occurs especially in the 

pile lee side. 

In the windward side of the pile, due to an 

inverse pressure gradient, a lifting of the boundary 

layer from the bed and a winding in the downstream  

 

 

direction occurs, which causes the knot 

vortex (or horseshoe shape) that is set around the 

pile, and its reproduction by reiteration [1]. 

First, we consider the limit of the spatial 

occupation index near 1. To incorporate the pile 

shape, we describe the advection acceleration in 

curvilinear coordinates and obtain the solution by 

applying the boundary layer equations in cylindrical 

coordinates. 

The statement of a stream function reduces 

the three governing equations to only two. For the 

potential area, we consider the complex potential, 

whose real part is the potential (scalar) and its 

imaginary part is the stream function; then we find 

the velocities and pressures. In the other limit, the 

spatial occupation index approaches 0; we consider 

the boundary layer equations in the limit of fully 

developed turbulence, then a new stream function 

and velocities in their radial and polar components 

are obtained. 

In the applications field, the case of dams, 

fan-shaped, the interaction between the fluid and a 

cylindrical pile is present, which must be located in a 

large area of flow control, in order to guide the 

turbulent wake and to reduce its energy before the 

arrival to the control section and the transition zone, 

and the beginning of the discharge channel. So, we 

are interested in the orientation and length of the 

turbulent wake downwind of the pile. The first is set 

by the symmetry axis of the pile according to the 
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current, while the length is imposed as a restriction 

to suggest a level for the aspect ratio of the same 

with the pile diameter. 

 

II. PROBLEM FORMULATION AND 

SOLUTION OF THE MODEL 
The law that governs fluid motion is 

described by the fractional Navier-Stokes equations 

together with the mass conservation law, which is 

reduced to the condition of non-divergence, in the 

case of incompressible fluids [2], [3], [4]. We 

observe an inability of the classic version of the 

Navier Stokes equations to explain some hydraulics 

problems like: the interaction between the fluid and 

a flat surface; the inverse cascade and vortices 

formation; the water profile in a spillway ogee 

shaped crest and the closure problem in Reynolds 

equations. 

According to our description, fluid 

movement occurs on the basis of viscous forces 

between adjacent layers with different velocities; 

therefore it cannot be described by a local operator 

due to the participation of a frictional force, and 

must be expressed by means a non-local operator. 

This is achieved by the law where Darcy’s flow is 

proportional and opposite to the fractional gradient 

of momentum per unit volume. Darcy’s flow 

generates an exchange of momentum, so that 

according to Newton's law, momentum change is the 

negative divergence, or Darcy’s flow convergence, 

with opposite sign. Variations in pressure and body 

forces also contribute to momentum change. Finally, 

for an incompressible fluid we obtain its velocity 

field evolution.  

Momentum Darcy’s flow is described by 

the equation 

uq 


 MD
 ,                     (1) 

where u  is the momentum per unit volume, 

u


M
  is the fractional gradient, 


 1,  

is the momentum diffusivity or kinematic α-

viscosity,   is the spatial occupation index, with 

the following units (   sec/



 m ), and M  is the 

scale mixture for different spatial directions. 

Taken into account the different momentum 

changes and denoting by (  ,,p ) the pressure, 

the potential of the body force and the fluid density, 

we obtain that the derivative of the velocity u is 

given by 
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Where M is chosen so that the flow u


 M
v   be 

proportional to the negative of the fractional 

Laplacian   u
2/


 v . Thus, equation (2) 

indicates that vorticity energizes the velocity field 

change against viscosity and under the restriction of 

energy conservation [4], [5].  

The velocity and pressure changes could be 

understand as deviations with respect to its average 

time value, and result in random stationary variables 

with zero-mean. However, we denoted mean values 

by ( pu
i
, ) [5]. The viscous flow in equation (2) 

can be rewritten in the form u


 M
v  , and based on 

the ergodic assumption, the Reynolds equations can 

be obtained, which contain the Reynolds stresses 

(
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(2) can be written in the form:   
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Boundary layer equations could be obtained 

by means of the fractional Navier-Stokes equations 

taken into consideration its relatively thin thickness, 

and are shown below 

upuvuuu
yxyxt




  / , [6], 

[7]. Also the stationary version of the boundary layer 

equations and the mass conservation equation as null 

divergence are shown in (4):

 

0,/  vuupuvuu
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                                                                  (4) 

Cartesian boundary layer equations take the 

form shown in (5), where the highly turbulent 

boundary is represented by 0 , and l
c

/
1

  , 
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 (5) 

 

III. SOLUTIONS 
In order to adapt to the different forms we 

use curvilinear coordinates, and modify the 

advective derivative 

     uuuu rotu 
2

2/1 . In cylindrical 

coordinates and in the approximation of the 

boundary layer, the concentrated expression of the 

advective derivative is simplified as follows:  
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considering also that 
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, equation that replace the Cartesian form 

   
yxyxcar

uu ,,,  . Therefore, the 

equation becomes as shown in (6), wherein, given its 

importance, polar component is first written, 
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The coordinate’s origin is located in the 

center of the pile whose radio is a , and on its 

surface is placed the boundary condition 0
 ar

u .  

Mass conservation is expressed as the 

coincidence of the mixed derivatives which 

manifests the continuity of the partial derivatives of 

the stream function. Now the three equations system 

is reduced to two, the polar (7) and the radial (8), 

being 
c

  the cinematic viscosity, 
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Fig. 1. Flow control downstream of a dam by means 

a pile (plan view). Flow zones and characteristics 

lengths are shown. 

 

The pile shadow is divided in the following 

two flow zones: irrotationals (or potential), where 

velocity is given by a scalar potential and rotationals 

(or solenoidal), where the vorticity is nonzero. Both 

are shown in Figure (1), [8].  For the potential or 

irrotational zone, the complex potential is formed by 

means of the scalar potential and the stream function 

   iwzf  , and is obtained from the 

inverse of 
2

//1 zzzw  . But in geometrical 

way it is described as 1zw , so the circle radius 

is the result of multiplying the outer distance by the 

inland. Changing the location of the circle center and 

its radius we obtained that the circle radius remains 

as the proportional average of the following two 

distances 

0

0
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l

l





, while its product is 

proportional to the flow that would pass through a 

tube with similar cross section. 

Besides, 
l

Ua  is the proportional average between 

the outer and inland distances [9]. Resolving we 

obtained (9) 
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Now, to identify the correction indicated in 

the equation (5), we resorted to the result reported in 

the reference [10] where the frictional force is 

expressed in proportion to the power of the indexed 

Reynolds number, a result that allows us to 

reproduce the Blasius experimental results, and that 

cannot be obtained through the classic Navier-Stokes 

equations. Taking into account this result and place 

it now in polar coordinates allows us to infer a new 

stream function (10), being   ,  the Blasius 

exponent and the spatial index respectively: 
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On the edge of the developed turbulence 

( 0 ), the new stream function opens the 

possibility of reconstructing radial and polar velocity 

components, as in (11); but also it gives us a 

performance for the correction term indicated in (5), 

rl
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Moreover, the pressure for the most 

appropriate way seems to be in agreement with the 

differential equation for the boundary layer flow 

based on its polar component, equation (7). The 

Euler number (
u

E ) is obtained, unless a dependent 

function of the radial distance ( r ), resulting from 

the indefinite integration, which it may be bounded 

by the information produced by the singularity of the 

stagnation point at (   ). In addition, if we 

observe closely the contribution of the viscous and 

inertial origin terms, is possible to detect that the 

second inertial term contains a new addition to the 

viscous forces. 

Consequently, the variation of the 

dimensionless pressure (  
ul

EUp /12/1/
2
  ) is 

estimated by the expression (12), (being a  the 

radius of the pile, 
l

U  the free velocity, and 
el

R  the 

Reynolds number associated with the free velocity 

and the pile diameter (  
clel

DUR / )),  
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The shape of the pressure distribution 

around the outside of the pile is shown in figure 2 

and seems a curve of cardioid type, with a 

singularity at its tangent which represents the 

stagnation point.  
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Fig. 2. Pressure variation distribution around the 

pile. Inward curve of the circle: positive change; 

external, negative. 

 

It is noted that while in the windward side 

of the pile, pressures are positive, in the posterior 

lobe of the cardioid, downwind of the pile, pressures 

are negative. With the growth of the Reynolds 

number, this lobe decreases (downwind) until 

eventually it goes into the circle and becomes 

another stagnation point, so that the curve takes the 

form of a bicardiode, similar to the known pressure 

"inviscid" solution, which has an analogous shape of 

a peanut shell. However, the participation of the 

viscosity breaks the symmetry about the vertical axis 

of the bicardiode "inviscid" solution; a pressure 

gradient along the current is observed and therefore 

a pressure drags force is present, which resolves the 

paradox of D'Alembert. Moreover, when we plot 

(not shown) the pressure and the polar angle for low 

Reynolds number, and place away from the inviscid 

solution, two adjacent mounds of different heights 

are obtained. This great difference is a manifestation 

of the viscosity, and corresponds to the pressure 

gradient that tries to drag the obstacle (the pile in 

this case). When Reynolds number increases, the 

second mound grows, the smaller, until eventually it 

comes up to the first; and again, a similar 

configuration to the "inviscid" is obtained.  

When we evaluate the pressure drag force 

around the cylinder, due to the symmetry, only the 

term with the viscosity factor contributes, so that the 

pressure drag force coefficient (
p

C ) (13) is 

obtained. Whereas for the frictional force coefficient 

f
C , (13) is obtained, and proves to be a third of the 

pressure.  

el

f

el

p

R
C

R
C

1
8,

1
24  

 (13) 

 

3.1 D'Alembert's paradox and Thomson theorem 

Under highly turbulent flow and with the 

fractional Navier-Stokes equations a clear distinction 

between movements with high Reynolds numbers 

and inviscid movements is stablished, the latest 

governed by the Euler equations. This can be 

explained because with high Reynolds numbers, 

kinematic viscosity is not neglected, but the spatial 

occupation index or the relative fractal dimension 

becomes small, and therefore a fluid in those motion 

states exerts a force (similar to that on a body 

immersed in the fluid) that is proportional to the 

kinematic viscosity. Paradox is resolved and ceases 

to exist. 

The vorticity is urot , its evolution is 

described by   



 u

Dt

D
; while the 

circulation evolution  
C

C
dlu  is given by 

 


C

C
dl

Dt

D
u




 ; so in the limit of the 

developed turbulence the statement of the Thomson 

theorem is recovered by (14): 

0
1

10



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C

C
dl

Dt

D
u


 (14) 

In a turbulent fluid, vorticity is nonzero 

only in a certain region of the flow field, although 

not necessarily finite; so, the fluid can penetrate into 

the region of nonzero vorticity, but can’t leave it. 

Energy dissipation in a turbulent flow occurs mainly 

in the region of nonzero vorticity, [6].  
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3.2 Dams, fan-shaped 

For applications, we define the Reynolds 

number based on the pile diameter and the radial 

velocity downwind of the pile as follows: 

cre
DuR / . The aspect ratio between the pile 

diameter and the control distance or the wake length 

is estimated, looking for the condition for this 

Reynolds number, a decrement with the radial 

distance. The result is as follows: on the border of 

inequality, the diameter must be the proportional 

average (geometric mean) between the control 

distance and the length (
lc

U/2 ), which we 

associate with the dam as the characteristic length 

(
lc

UL / ), matching the free velocity with the 

maximum velocity in the dam, see figure 1. Then 

(15) is obtained, being K the contraction factor; so, 

it follows that 




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


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r
w

2
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/

1/
11,

2 DL

DL
K

L

D

D

r
K

w



     (15) 

We emphasize that the estimation was 

achieved by means the fractional formulation, 

because it is impossible through inviscid approach, 

as the Reynolds number does not decrease with the 

pile downwind distance. 

 

IV. CONCLUSIONS 
The interaction between fluid and a circular 

pile is studied, with the fluid motion described by 

means of the fractional Navier-Stokes equations, and 

in particular by its boundary layer approximation. 

The pressure distribution on the edge of the cylinder, 

which provides the Euler number, allows us to 

observe the symmetry breaking caused by the 

viscosity on the vertical plane, meaning a drag on 

the cylinder in the mainstream direction. The 

coherence is retrieved by solving the D’Alembert’s 

paradox and the Thomson's theorem (14), not by 

canceling the viscosity but by the smallness of the 

fractal dimension. For applications, the orientation 

of the turbulent wake behind the pile is given by its 

symmetry axis. Its control distance (15) is imposed 

as a level of its aspect ratio, with the pile diameter. 

The criterion is as follows: the pile diameter, on the 

border of inequality, must be located as the 

proportional average between the length of the 

turbulent wake and 2 times a characteristic length 

associated with the dam, whose aspect ratio, in turn, 

to the diameter of the pile, determines the 

contraction factor.  
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